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Abstract— In this contribution we present the mutual
synchronization of an ensemble of robots with closed
kinematic chain. Parallel kinematic chains possess the
advantages of high stiffness, low inertia, and large payload
capacity. The main idea is to achieve synchronization in an
group of robots composed by planar five-bar parallel robots
with two D.O.F.s. The synchronization is achieved into the
workspace, i.e., the end position of each robot is equal to the
rest of the robots. The mutual synchronization is achieved
by means of a torque-computed PD controller and numerical
simulations are provided to illustrate the results.

Keywords: Mutual Synchronization, Parallel Robot
Syncronization.

I. I NTRODUCTION

The definition of synchronization was firstly introduced
by Christian Huygens in the 16th century, and means to
share the space at the same time (Pikovskyet al., 2008).
This definition was presented by Afraimavich applied to
dynamical systems (Afraimovichet al., 1986), after that it
was applied to complex chaotic systems (Femat and Solı́s-
Perales, 2008), where control techniques have been applied
with a variety of results. However, in the field of mecha-
nical systems, the synchronization has been studied as a
cooperation or a coordination problem, where a task cannot
be carried out by a single system or robot (Nijmeijer and
Rodriguez-Angeles, 2003). In the cooperative scheme any
system has information from the other systems, whereas in
the coordinated scheme there exists a leader which dictates
the behavior to the rest of the systems. Both schemes in-
volve synchronization. The cooperative scheme can be seen
as a complex network, where there exists an arrangement
of nodes or systems which are connected or linked by a
coupling force, moreover there exists a connection matrix
which determines the topology of the network or the interac-
tion between systems (Albert and Barabası́, 2002; Wang and
Chen, 2003; Boccalettiet al., 2002). Coordinated scheme
concerns with the master-slave synchronization, where there
is a master or leader system and one or many slaves, and

any slave receives information from the leader (Femat and
Solı́s-Perales, 2008; Boccalettiet al., 2002).

We consider that four robots are synchronized if they
perform the same task at the same time, whereas the
synchronization between the articular coordinates is given
by the inverse and direct kinematics transformations, thus
the robots are synchronous in the work space and in the
articular space. The aim of studying synchronization of
mechanical systems is that in real processes like manufactu-
ring, biomedical, automotive, it is required more efficiency,
quality and precision in the resulting product, therefore,the
coordinated and cooperative schemes have been developed.

Parallel mechanical architectures have been originally
proposed in the context of tire-testing machines and flight
simulators (Stewart, 1965). Parallel kinematic chains have
recently attracted attention to machine tool field (Parallel
Kinematic Machine-PKM) and automation because of their
conceptual potentials in high motion dynamics and accu-
racy, combined with high structural rigidity due to their
closed kinematic loops (Weck and Staimer, 2002). The
main motivation behind the use of such architectures is
that they provide better stiffness and accuracy than serial
kinematic chains. Moreover, they allow the actuators to be
fixed to the base –or to be located close to the base– of
the mechanism, which minimizes the inertia of the moving
parts and makes possible to use more powerful actuators
(Gosselinet al., 1996). Because the external load can be
shared by the actuators, parallel manipulators tend to havea
large load-carry capacity. However, they suffer the problems
or relatively small useful workspace and design difficulties
(Tsai, 1999).

The main idea of the present work is to show that
closed kinematic chains can be synchronized when they
are connected in a network form. We use a classical
control action provided by a Proportional and Derivative
controller which are very common in robotics, however this
controller requires some information in order to tracks the
trajectory, nevertheless, we consider that this information
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Fig. 1. Robot essemble of four RPDR robots.

is available for feedback. Another controller can provide
the same result, in other words, the synchronization of
strictly different robots could be obtained independentlyof
the control strategy.

This paper is organized as follows, the section II presents
the problem statement, in sections III and IV the mechanical
system description is provided, the simulation results are
presented in section V and finally the work is closed with
some conclusions in section VI.

II. PROBLEM STATEMENT

The mutual synchronization problem can be seen as a
network of robots linked by a coupling force, moreover,
each robot has connected a controller and is provided by the
reference signal. There are two classes of networks, small
world networks are characterized by posses a small relative
average distance between nodes and scale free networks
where a small number of nodes are highly connected and
the rest of the nodes are connected to some of this nodes.
Therefore we consider a small world network of robots. As
was stated in the Introduction, the synchronization of robots
is considered when the systems track the same trajectory at
the same time, this is, the trajectory in the workspace is
tracked by each robot.

The dynamics of a mechanical system considered is such
that in absence of friction and other disturbances is obtained
using Lagrangian dynamics and is given by the following
set of ordinary differential equations

D′(q)q̈ + C′(q, q̇)(q̇) + G′(q) = τ (1)

whereq(t) ∈ R
n is the vector of joint variables;D′ (q) ∈

R
n×n is the inertia matrix;C′ (q, q̇) ∈ R

n×n represents the
Coriolis and centrifugal forces,G′ (q) ∈ R

n is the vector of
gravitational forces, and the control input torque isτ ∈ R

n.
The inertia matrixD′(q) is symmetric, positive definite and
is uniformly bounded i.e.,

m1‖x‖2 ≤ xT D′(q)x ≤ m2‖x‖2 , ∀x ∈ ℜn (2)

where it is assumed thatm1 andm2 are known positive
constants that depend on the mass properties of the specific
robot manipulator. The matriẋD′ (q)−2C′ (q, q̇) is skew-
symmetric.
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Fig. 2. Planar five-bar parallel robot and its workspace.

Once the trajectory is defined, we propose a torque
computed PD controller and also consider the interaction
between robots. It is given as follows

τi = Di(qi)q̈ri + Ci(qi, q̇i)q̇ri + Gi(qi)

−Kp,iei −Kd,iėi

(3)

for i = 1, 2, ..., N and the error termei = qi − qri includes
the diffusible connection of the network and it is given by

ei = qi − qri = qi − {qd − c

N
∑

j=1

aijqj} (4)

where qd is the desired trajectory provided by the signal
to be tracked,qri is the deviation of the robot trajectories
from the desired signal which includes the effects of the
robots in the network,ai,j defines the network topology,
in other words the interconnection between the robots,c
is the coupling strength which links each robot,Kp,i, Kd,i

andKI,i are positive definite gain matrices which can be
determined in such manner that the closed-loop dynamics
be stable (Nijmeijer and Rodriguez-Angeles, 2003).

III. K INEMATIC PROBLEMS

In Fig. 2 we can see that the end effector point
P (xP , yP ), points up andQ, R, S, T define the workspace
where the desired trajectory is implemented to perform
synchronization ofn robots, each with similar architecture.

In this part is developed the direct and inverse kinematics
using a similar methology presented in (Liuet al., 2006)

III-A. Inverse Kinematics

The inverse kinematic problem can be solved by writting
following constraint equations

|PB| = L3 |PD| = L4 (5)

in another form

[x− L1 cos(q1)]
2 + [y − L1 sin(q1)]

2 = L2
3 (6)

Congreso Anual 2010 de la Asociación de México de Control Automático. Puerto Vallarta, Jalisco, México.



[x− L5 − L2 cos(q2)]
2 + [y − L2 sin(q2)]

2 = L2
4 (7)

from above equations, if the position ofP is known the
variablesq1 andq2 can be obtained as

qi = 2 tan−1(zi) , i = 1, 2

where

zi =
−bi + σi

√

b2i − 4aici
2ai

(8)

in which

σi = 1 or − 1

a1 = x2 + y2 + L2
1 − L2

3 + 2xL1

b1 = −4yl1

c1 = x2 + y2 + L2
1 − L2

3 − 2xL1

a2 = x2 + y2 + L2
2 − L2

4 + L2
5 − 2xL5 − 2L2(L5 − x)

b2 = −4yl2

c2 = x2 + y2 + L2
2 − L2

4 + L2
5 − 2xL5 + 2L2(L5 − x)

For the configuration shown in Fig. 2 is necessary thatσ1 =
1 andσ2 = −1.

III-B. Forward Kinematics

The position of output pointP (x, y) with respect to input
anglesq1 andq2 is determined from the following equations

x2+y2−2[L1 cos(q1)]x−2[L1 sin(q1)]y+L
2
1−L2

3 = 0 (9)

x2 + y2 + 2x[L2 cos(q2) − L5] − 2y[L2 sin(q2)]

+ 2L2L5 cos(q2) + L2
5 + L2

2 − L2
4 = 0 (10)

From (9)−(10) yields

x = ey + f (11)

where

e =
L2 sin(q2) − L1 sin(q1)

−L2 cos(q2) − L5 + l1 cos(q1)

f =
L2

1 − L2
2 − L2

3 + L2
4 − L2

5 − 2L2L5 cos(q2)

2(−L2 cos(q2) − L5 + L1 cos(q1))

Substituting (11) to (9) yields

dy2 + gy + h = 0 (12)

in which

d = 1 + e2

g = 2(ef − L1e cos(q1) − L1 sin(q1))

h = f2 − 2fL1 cos(q1) + L2
1 − L2

3

so, y can be obtained as

y =
−g + σ

√

g2 − 4dh

2d
(13)

whereσ = 1 corresponds to the configuration shown in Fig.
2.
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Fig. 3. Free system.

IV. REDUCED DYNAMIC MODEL

The reduced model method of closed chain mechanisms
presented in (Ghorbelet al., 2000) is employed to obtain
the dynamic model of the five-bar parallel robot.

D(q′)q̈ + C(q′, q̇′)q̇ +G(q′) = τ (14)

q̇′ = ρ(q′)q̇ (15)

q′ = σ(q) (16)

D(q′) = ρ(q′)TD′(q′)ρ(q′) (17)

C(q′, q̇′) = ρ(q′)TC′(q′, q̇′)ρ(q′) + ρ(q′)TD′(q′)ρ̇(q′, q̇′)
(18)

G(q′) = ρ(q′)TG′(q′) (19)

The first step in deriving the equations of motion is the
selection of free system. In our free system, the robot is
virtually cut open in the end-effector, resulting in two serial
robots each with two dofs as shown in Fig. 3 (Ghorbelet
al., 2000). In this,mi, Li, Lci, are respectively, the mass,
length of link i, and distance to the center of mass. The
inertia of link i about the line through the center of mass
parallel to the axis of rotation is denotated byIi. Thus the
constraint equations are due to pointE being coincident
with point F and are given by

φ(q′) =
[

L1 cos(q1)+L3 cos(q1+q3)−L5−L2 cos(q2)−L4 cos(q2+q4)
L1 sin(q1)+L3 sin(q1+q3)−L2 sin(q2)−L4 sin(q2+q4)

]

(20)
where q′ = [q1 q2 q3 q4]

T is the generalized coordinate
vector of the free system andq = [q1 q2]

T ∈ R
2 is the

independent generalized coordinate vector of position of
the actuated links. Since the jointsq1 and q2 are actuated,
we choose the vector of generalized coordinates of the
constrained system asq = [q1 q2]

T . The parameterization
α(q′) = q is given by

α(q′) =

[

1 0 0 0
0 1 0 0

]

q′ = q (21)

Define

ψ(q′) ,

[

φ(q′)
α(q′)

]

, ψq′(q′) ,
∂ψ

∂q′
(22)
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obtaining

ψq′ (q′) =









ψq′(1, 1) ψq′(1, 2) ψq′ (1, 3) ψq′(1, 4)
ψq′(2, 1) ψq′(2, 2) ψq′ (2, 3) ψq′(2, 4)

1 0 0 0
0 1 0 0









(23)
where

ψq′(1, 1) = −L1 sin(q1) − L3 sin(q1 + q3)

ψq′(1, 2) = L2 sin(q2) + L4 sin(q2 + q4)

ψq′(1, 3) = −L3 sin(q1 + q3)

ψq′(1, 4) = L4 sin(q2 + q4)

ψq′(2, 1) = L1 cos(q1) + L3 cos(q1 + q3)

ψq′(2, 2) = −L2 cos(q2) − L4 cos(q2 + q4)

ψq′(2, 3) = L3 cos(q1 + q3)

ψq′(2, 4) = −L4 cos(q2 + q4)

ρ(q′) can be expressed as follows:

ρ(q′) = ψ−1
q′ (q′)









0 0
0 0
1 0
0 1









(24)

and

ρ̇(q′, q̇′) = −ψ−1
q′ (q′)ψ̇q′(q′, q̇′)ρ(q′) (25)

D′(q′), C′(q′, q̇′), G′(q′), are determined as follows. By
means of Lagrangian methods (Tsai, 1999) we can obtain
the inertia matrixD′(q′) ∈ R

4×4:

D′ (q′) =

n
∑

i=1

(

JT
vimiJvi + JT

ωiIiJωi

)

(26)

D′ (q′) =









d1,1 0 d1,3 0
0 d2,2 0 d2,4

d3,1 0 d3,3 0
0 d4,2 0 d4,4









(27)

where

d1,1 = m1L
2
c1 +m3

(

L2
1 + L2

c3 + 2L1Lc3 cos (q3)
)

+ I1 + I3

d1,3 = m3

(

L2
c3 + L1Lc3 cos (q3)

)

+ I3

d2,2 = m2L
2
c2 +m4

(

L2
2 + L2

c4 + 2L2Lc4 cos (q4)
)

+ I2 + I4

d2,4 = m4

(

L2
c4 + L2Lc4 cos (q4)

)

+ I4

d3,1 = d1,3

d3,3 = m3L
2
c3 + I3

d4,2 = d2,4

d4,4 = m4L
2
c4 + I4

TABLE I

PARAMETERS OF THE MECHANICAL SYSTEM

Link mi (kg) Li (m) Lci (m) Ii (kg · m2)
1 0.91 0.08 0.006 0.000847
2 0.28 0.10 0.028 0.000630
3 0.38 0.25 0.125 0.004002
4 0.38 0.25 0.125 0.004002
5 – 0.25 – –

TABLE II

INITIAL POSITIONS FOR EACH COORDINATE OF THERPDR’S

RPDR q1(0) q2(0)
1 0.00 0.00
2 1.5π 1.2π
3 π π
4 π/4 π/4

Coriolis matrix is:

C′ (q′, q̇′) =









c1q̇3 0 c1 (q̇1 + q̇3) 0
0 c2q̇4 0 c2 (q̇2 + q̇4)

−c1q̇1 0 0 0
0 −c2q̇2 0 0









(28)
where c1 = −m3L1Lc3 sin (q3), and c2 =

−m4L2Lc4 sin (q4). Gravity vector is

G′(q′) = g

[

(m1Lc1+m3L1) cos(q1)+m3Lc3 cos(q1+q3)
(m2Lc2+m4L2) cos(q2)+m4Lc4 cos(q2+q4)

m3Lc3 cos(q1+q3)
m4Lc4 cos(q2+q4)

]

(29)

where g = 9.81 m/s2 is the gravitational acceleration
constant.

ψ (q′) ,

[

φ (q′)
α (q′)

]

(30)

Manipulating (20) by a similar procedure to obtain the
well known Freudenstein’s equation, we can getq4 andq3
as

q4 = 2 tan−1

[

B + σi

√
A2 +B2 − C2

A+ C

]

− q2 (31)

q3 = tan−1

[

µ+ L4 sin(q2 + q4)

λ+ L4 cos(q2 + q4)

]

− q1 (32)

where λ = −L1 cos(q1) + L2 cos(q2) + L5, µ =
−L1 sin(q1) + L2 sin(q2), A = 2L4λ, B = 2L4µ, and
C = L2

3 − L2
4 − λ2 − µ2.

V. SIMULATION RESULTS

We have four robots with identical configurations and
properties (see Table I). Each one of the robots has a model
based control, i.e., computed-torque control PD (neither
disturbances nor friction are considered)(Lewiset al., 2003).
All robots have implemented the same types of control and
with identical gains. They differ only in their inicial posi-
tion, as indicated in Table II. The gains of the controllers
areKp = 100 andKd = 20, obtained heuristically. The
derivatives ofq4 andq3 were obtained analytically to avoid
the use of numerical derivation. The system was simulated
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in MATLAB/SIMULINK with R2009b version 7.9. For syn-
chronization was used the mutual synchronization equation

yrefk,1(t) = ydk(t)

yrefk,i(t) = ydk,i−1(t)

where k = 1, . . . ,m and i = 2, . . . , l. Within each of
simulation block the equation above was implemented. The
coupling constant factor of each robot is 1. The result of
this equation is the reference synchronization that will take
control of each robot. Since this equation depends on the
interaction of the robots, at one point the four robots come
to perform the same action. It is when is said they are
already synchronized. Note that not always going to follow
the desired reference, i.e., the robots will be doing the same.
The desired trajectory for the pointP is a circunference
that has a radius of 0.053 m and its center is located at
(0.14, 0.21) This path has a velocity profile given by the
following equation:

θ = 2π(10T 3 − 15T 4 + 6T 5) (33)

whereT = t/tfinal, that in this casetfinal = 4 s. This
velocity profile was used to generate the circle

x = x0 + r cos(θ) y = y0 + r sin(θ) (34)

Eq. (34) will generate the coordinates for the Cartesian pla-
ne. Using the inverse kinematics we calculate this position
in joint coordinates andq1 andq2. As method of integration
a fixed step ode3 was chosen, with value 0.01 s.

Fig. 4 presents the tracking path of each robot; Fig. 5 and
6 show tracking errors and applied torques, respectively.

VI. CONCLUSIONS

Open-chain mechanisms possess some inherent disadvan-
tages, for example, the position accuracy at the endpoint of
the long robot arm is considerably low; a small amount
of error at each revolution joint is magnified at the end-
point of the arm as its length gets longer; most importantly,
the mechanical stiffness of the open-chain construction is
inherently poor. As a result, the accuracy of the motion
tracking performance can be deteriorated. The research
trend in modern machinery development therefore shifts
toward the design of a new generation of mechanism,
i.e., the closed-chain mechanisms for the position and the
trajectory tracking purpose.

In this work we show that there is possible to synchronize
closed kinematic chain robots with complex dynamics.
Also, the synchronization speed is good enough for our
purposes with very short response times. The output torque
requires low energy this will allow to use compact actuators.
This work sets a precedent for developing adaptive tech-
niques to improve the model of the robot without having
to know its exact dynamics a priori, achieving a better
level of performance. Also, for further research, complex
parallel structures with higher degrees of freedom would
be modelled and controlled.
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Fig. 4. Tracking of the desired reference trayectory for each RPDR.
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